
MICRO
SERVICES



Table of
Content

Overview 

Types of Microservices

How does Microservices Architecture work

Microservices Advantage

Microservices Best Practices

Conclusion

ReferencesReferences

01

02

03

04

05

06

0707



Overview
Microservices-based architectures offer greater agility and help growing 
organizations accelerate innovation in their digital experiences. This 
approach provides immense flexibility and serves as a business-critical 
component to omnichannel applications through API integrations. With 
time, an enterprise application becomes complex, demands scalability, and 
needs high responsiveness, microservices help organizations quickly fulfill 
their growing business needs. Even though the microservices approach 
involves more complexity and monitoring systems, the benefits you can 
achieve are worth the effort.

According to a recent survey by Statista, 85 percent of respondents 
from large organizations (5,000+ employees) said they are currently 
using microservices.

When to use Microservice Architecture?

To accommodate 
scalability, agility, and 
manageability

To rewrite your legacy 
application on the 
latest programming 
language or tech stack

To reuse a lot of standalone 
business software components 
across multiple channels

To update your 
application with 
new features on 
a regular basis



Types of Microservices
Microservices can be broadly categorized into two “stateless” and “stateful”.

Stateful microservices Stateless microservices

Such type of microservices possesses saved 
data in a database and is a good candidate as 
the building blocks of a distributed system. 
Well-behaved stateful microservices don’t 
tend to share databases with other 
microservices to make decoupling seamless 
and offer well-defined interfaces. Whenever a 
stateful service terminates it has to save its 
state.

Such type of microservices doesn’t save 
anything. Stateless microservices take in a 
request, process it, and send a response back 
without persisting any state information. Once 
the request is completed they forget it, which 
implies stateless microservices don’t keep any 
handy permanent notes to remind them where 
they got to. Whenever a stateless service 
terminates it has nothing to save.

Since microservices allow a large application to be separated into smaller 
independent parts, with each part having its own realm of responsibility, 
microservices architecture can be further categorized into four main types:

The single-tier microservice architecture 
is used mainly to develop, deploy, and 
manage a distributed system at ease. In 
this architecture, a collection of individual 
services work together to provide a 
complete solution and are typically 
written in a specific language or 
framework. They are designed to be 
independent and self-sufficient in nature.

The two-tier architecture divides each 
microservice into two parts i.e. a 
front-end and a back-end, which enables 
the front-end microservice to handle the 
user interaction and the back-end 
microservice to handle the business logic. 
Even though this segregation makes the 
two-tier architecture easier to scale and 
operate, it makes it harder to debug a 
problem in the back-end microservice, as 
the back-end microservice remains 
isolated from the rest.

Single-Tier Microservice 
Architecture

Two-Tier Microservice 
Architecture

Such types of microservice architectures 
are used to organize distributed systems. 
In the typical three-tier architecture, you 
will find a client, a middleware layer, and a 
back-end or application layer. The client 
uses the middleware layer to access the 
back-end or application layer and the 
middleware layer provides a common 
interface to the back-end or application 
layer to manage communication between 

The best advantage of using this 
microservice architecture is that the 
application can be easily deployed and 
managed on a cloud-based platform, such 
as Amazon Web Services (AWS) which 
helps the application to scale up or down 
during the deployment of new features or 
changes. Apart from this, microservice 
architecture with a cloud-based back-end 
also improves the accessibility on a wide 
range of devices enabling the application 
to be used by a large number of users, 
regardless of their location.

Three-Tier Microservice 
Architecture

Microservice Architecture 
with a Cloud-Based Back-End



How does Microservices 
Architecture work?

The microservices architecture focuses on 
classifying bulky applications. Each one of 
the microservice addresses an application’s 
single concern, such as a data search, 
logging function, or web service function. 
All these individual microservices come 
together to form one efficient application. 
This intuitive, functional division of an 
application provides an even greater ability 
to quickly update the code of a single 
function, without refactoring or even 
redeploying the rest of the microservices 
architecture, in an overall service or larger 
end-user application. This makes failure 
points more independent of each other and 
helps in creating a more stable overall helps in creating a more stable overall 
application architecture.

Using microservices architecture also generates an opportunity for other microservices to 
become self-healing. With orchestration tools like Kubernetes, self-healing can occur without 
human intervention automatically and is transparent to the end user as well.



Microservices Advantage

Even though microservices are decentralized and run 
on different servers still they work together for an 
application. Each microservice serves a single function 
and enables simple routing between services with API 
communication. Here are some of the other benefits:

The Microservices approach offers your team the 
ability to move faster when it comes to adding 
new features by breaking major application 
functionalities into independent components. The 
approach helps developers to quickly adapt to new 
technologies, 
user complaints, and market changes.

Accelerated Development

Scaling an application for millions of customer 
bases is impossible and massively expensive if 
you are using a monolithic setup. Microservices 
are an efficient use of resources and it leads to 
lower costs of running each instance of 
application development.

Improves scalability

The Microservices approach enables your existing 
and new talents to learn a single system for 
business growth. Over time new hires can continue 
contributing to the entire application up-gradation 
without any hurdle.

Enables faster Knowledge Transfer

Microservices applicaƟons are self-contained and 
you can do whatever you want with them without 
affecƟng the rest of the system. Using microservices 
allows developers to create new capabiliƟes without 
wriƟng code from the scratch.

Offers Reusability

Managing a microservices applicaƟon is actually 
easier than a monolithic one. If you’re dealing 
with thousands of discrete components and 
transacƟons, the microservices approach oŌen 
has beƩer tools and methodologies that handle a 
large number of components effecƟvely.

Easier Maintenance

The Microservices approach impacts applicaƟon 
development massively and enables businesses 
to enhance an applicaƟon’s real-Ɵme 
performance and availability. 

Improves Quality



Microservices Best Practices 

Based on our extensive experience with microservices-based 
digital lending technology, we have listed the 9 best 
practices and hands-on-approach that will ensure a secured 
and scalable FinTech ecosystem with microservices for your 
business.

Enhance efficiency with Domain-Driven Design (DDD): 

Using a DDD-oriented approach for microservices helps with loosely Using a DDD-oriented approach for microservices helps with loosely 
coupled services and enables consistent high-level functionality. The 
strategic phase of the Domain-Driven Design model will ensure design 
architecture that can encapsulate business capabilities and its tactical 
phase, on the other, will allow the creation of a domain model using 
different design patterns for your business.

Make use of the Single Responsibility Principle (SRP): 

Using SRP as a microservice design principle for FinTechs is healthy 
because if something goes wrong, only one program’s functionality will 
take the hit, not the entire application, which is unfortunately true for the 
monolith.

Facilitate service autonomy with independent microservices: 

In case you are planning to take the service isolation a step further then 
you should facilitate independent microservices. With this approach, a 
microservice can be deployed and scaled as needed because they work 
together and communicate through well-defined APIs or similar 
mechanisms that don’t expose the internal workings of the microservices.

Use asynchronous communications between services: 

Being a non-blocking communication protocol, asynchronous 
communication follows event-driven architecture which reduces the 
coupling between services during the execution of user requests and 
provides better resilience between microservices.



Ensure Distributed database for microservices: 

Microservices are loosely coupled but still, they retrieve data from the 
same data store with a shared database, and thus to deal with multiple 
data queries, latency issues, improves security and resilience; FinTechs 
must use distributed databases for microservices.

Containerize microservices for scalable and distributed systems: 

With containerized microservices, FinTechs can create a massively 
scalable and distributed system to avoid the bottlenecks of a central 
database. They also facilitate rapid rollouts & rollbacks and continuous 
integration & continuous delivery (CI/CD) pipelines for applications and 

Implement microservices security best practices: 

Since microservices communicate with external platforms or services, it’s 
crucial for FinTechs to tackle security issues and implement 
microservices security best practices by adapting to the DevOps model 
which can ensure the security of your entire microservices framework.

Use immutable APIs for simplified parallel programming: 

Using microservice architecture makes parallel programming much easier 
and secured with immutable containers. Immutable APIs enable you to 
execute multiple threads in parallel and improve the efficiency of 
programming.

Adopt a DevOps culture to boost delivery speeds: 

Adopting a DevOps culture for your organization will enable a cohesive 
strategy, efficient collaboration, increased agility, scalability, and 
flexibility for both development and operations.



Conclusion

Using microservices-based digital lending technology for your business can 
bring various benefits like speedier deployment and scalability, reduced 
downtime, and overall improvement. Following the microservices best 
practices will not only help your business with a seamless transition from 
monolithic to microservice-based applications but will also help in:

planning & organizing whether the 
microservices architecture is a 
good fit based on your 
requirements.

1
designing your services to be 
loosely coupled, have high 
cohesion, and cover a single 
bounded context.

2

developing an environment that 
enables developers to adapt the 
framework and get started 
quickly.

3
data storage & management of 
each microservice.4

deploying & hosting your 
microservices with 
containerization and DevOps 
model.

5



References
https://www.statista.com/statistics/1236823/microservices-usage-per-organization-
size/

https://www.emizentech.com/blog/microservices-architecture.html

https://middleware.io/blog/microservices-architecture/

https://aws.amazon.com/microservices/

https://www.tetrain.com/component/blogfactory/post/43/what-are-the-types-of-micr
oservice-architecture.html


